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We introduce a simple nonequilibrium version of the Ising model, exhibiting an order-disorder phase tran-
sition. It corresponds to the competition of two different kinetic processes: one of them ordering the system and
the other one disordering it~temperatures zero and infinity, respectively!. Owing to the simplicity of the model,
it is possible to define apseudotemperature Tcharacterizing the system. By usingT we elucidate a striking
point recently arisen in the literature, namely, how does the critical region of nonequilibrium systems compare
to that of their equilibrium counterparts. Extensive numerical simulations are presented, and the conclusion is
made that the model belongs in the equilibrium Ising model universality class confirming a well known
conjecture.@S1063-651X~96!12911-1#

PACS number~s!: 05.40.1j, 64.60.Cn, 64.60.Ht

I. INTRODUCTION

The Ising model played a central role in the development
of the theory of equilibrium phase transitions@1#. Despite the
fact that it is defined in a very simple way, it captures the
essential properties of a ubiquitous phase transition, namely,
that occurring in one component systems with up-down sym-
metry and no extra symmetries or conservation laws. Exten-
sions of the model to deal with time dependent properties,
such as the Kawasaki spin-exchange model for systems with
magnetization conservation@2#, and the Glauber spin-flip
model for systems without extra conservation laws@3#, re-
sulted as paradigmatic as their static counterpart. These dy-
namical Ising models are defined by stochastic master equa-
tions, in which the transition rates are such that the
associated stationary probability distribution is given by the
exponential of minus the Ising Hamiltonian divided by a
given temperature and properly normalized, i.e., the well
known equilibrium distribution. In this way, these models
depict the relaxation to equilibrium.

The possibility of getting exact solutions ford51 and/or
d52 @3,4# makes these models an appropriate workbench to
study basic properties of systems exhibiting a phase transi-
tion.

The following natural extension of the Ising model con-
sists of modifying it somehow in order to study far from
equilibrium phase transitions.

This objective can be fulfilled in different ways. One of
them, the only one we consider here, is based on the consid-
eration of a system in which different microscopic processes
compete with each other. That is, each of the individual pro-
cesses by itself drives the system to a different stationary
state, but the competition between them gives rise to what is
called in the literaturedynamical frustration.

The way to implement this idea in an Ising-like model is
by considering a master equation with competing dynamics;
i.e., the transition rates are given by a linear superposition of

individual, equilibriumlike, transition rates. If only one of the
elementary processes was active, then the stationary solution
to the corresponding master equation would be an equilib-
rium one with an associated Ising Hamiltonian and a tem-
peratureTi . The same is true for all the single dynamics,
with the only difference being that for each of them the sta-
tionary solution is given, by definition, by a different tem-
perature value,T1ÞT2ÞT3Þ••• @5#. The stationary states
associated with this kind of model do not satisfy, in general,
detailed balancewith respect with any short range effective
Hamiltonian, and therefore correspond to nonequilibrium
situations. A number of studies and reviews of this sort of
model can be found in Refs.@6–8#.

In this paper we focus on models with competing spin-flip
dynamics at different temperatures~CSF! from those studies
in @8–10#, that is, we will not consider here processes involv-
ing spin exchanges.

These CSF models, from their equilibrium counterparts,
may exhibit an order-disorder phase transition. This nonequi-
librium transition is what we focus our attention on. There
are two different issues that require some attention. The first
question is whether these models belong in the same univer-
sality class as the equilibrium Ising model, or if their non-
equilibrium nature changes the critical behavior. Grinstein,
Jayaprakash, and He@11# argued some time ago that, in fact,
nonequilibrium models with up-down symmetry and no extra
conservation law belong in the Ising universality class. Their
argument is based on the observation that the dynamical
Ising fixed point is stable under the renormalization group
~RG! flow, with respect to the introduction of new terms that
preserve the symmetry~even though these may not be deriv-
able from an equilibrium Hamiltonian!. That is, the terms
responsible for the nonequilibrium nature of these models
are irrelevant under RG transformations. So far this expecta-
tion has been confirmed numerically for models with com-
peting temperatures@8,10,12#.

The second interesting point has arisen in a recent paper
@9#, in which it was shown numerically that the asymptotic
region for scaling in CSF models seems to be much wider
than its analog in the equilibrium models. A satisfactory ex-*Electronic address: jjalonso@pmmh.espci.fr
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planation for that fact is still lacking.
In order to shed some light on the issues of the critical

behavior of the model and especially the scaling region size,
we introduce the a simple nonequilibrium Ising model with
competing dynamics, i.e., a model with only two different
spin-flip mechanisms operating at zero and infinite tempera-
ture, respectively. The stationary states of this model inter-
polate between perfect order and complete disorder as a
function of a parameter that weighs the probability of each of
the two mechanisms to occur; i.e., when the zero temperature
mechanism probability is large enough the system is ordered,
while when the infinite temperature is dominating the system
is disordered. Consequently, a critical point corresponding to
the order-disorder transition is expected to separate both re-
gions in the phase diagram.

We present some analytical arguments, as well as exten-
sive Monte Carlo~MC! simulations, paying special attention
to the critical behavior, the cluster size distribution, and the
asymptotic scaling region extension as compared to their
equilibrium counterparts.

Owing to the model simplicity we are able to introduce a
pseudotemperaturethat simplifies greatly the problem and
allows us to clarify the previously mentioned issue.

II. MODEL DEFINITION

Let us consider ad-dimensional square latticeL, and de-
fine a spin variablesx561 at each sitex. The master equa-
tion ruling the evolution of the probabilityP(s,t) of having a
configurations5{ sx , xPL} at a given timet is

]P~s,t !

]t
5(

x
@w~sx→s!P~sx,t !2w~s→sx!P~s,t !#,

~2.1!

wheresx coincides withs except for the spin at positionx,
which is flipped. The transition rates are specified by

w~s→sx!5p1~12p!QS (
y
sysx

xD ~2.2!

where the sum is extended to all the nearest neighbors ofx
and Q(0)51. This correspond to the competition of two
Metropolis processes@13#. If p51 all the possible transitions
occur with the same probabilityp, corresponding to a kinetic
Ising model at infinite temperature~vanishing magnetization
for the stationary state!. On the other hand, ifp50 the en-
ergetically favorable and indifferent transitions occur with
probability 1, and the energetically unfavorable processes
are forbidden. This correspond to a kinetic Ising model at
zero temperature~magnetization,m561 in the stationary
state!. For pP]0,1@ , the system is no longer a relaxational
equilibrium model.

III. NONEXISTENCE OF AN EFFECTIVE HAMILTONIAN

The idea of effective Hamiltonians was introduced by
Garrido and Marro@14# some years ago. Since then it has
proven to be a useful tool. Under a set of specified circum-
stances it can be shown that certain nonequilibrium models
with competing dynamics can be mapped onto equilibrium
models with effective parameters. Next, we try to find an
effective Hamiltonian for our model. For that purpose we
assume that an effective kinetic equilibrium Ising model with
Metropolis dynamics exist. The transition rates can then be
written as

w~s→sx!5minX1,expS 1

Teff
(
y
sysx

xD C. ~3.1!

In order to determineTeff we have to consider the different
values ofsx and its nearest neighbors. Notice that only the
energetically unfavorable transitions depend onTeff ~for the
rest we have just 1). There are two different kinds of increas-

FIG. 1. The normalized fourth order cumulant is plotted for
different system sizes as a function ofT. s are forL5128,h for
L564, L for L532, and1 for L516. The intersection point
corresponds to the criticalpseudotemperature. The best estimate is
Tcrit52.04260.006.

FIG. 2. The magnetization for the Ising model (h), and the
nonequilibrium model (s) for L5128, as a function of the distance
to the critical pointe. The dashed line corresponds to the Onsager
solution. Inset: magnetization vs energy~pseudoenergy! for the
Ising model (h) and the two-temperatures model (s). For a fixed
magnetization, the energy is larger in the nonequilibrium case.
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ing energy processes: those in which the foursx nearest
neighbors~nn! are equal tosx , and those for which only
three NN are equal tosx . For these, equating Eqs.~2.2! and
~3.1!, we have

Teff
~4!52

4

ln~12p!
~3.2!

and

Teff
~8!52

8

ln~12p!
, ~3.3!

respectively. This means that all the possible stochastic pro-
cesses can be represented by an effective equilibrium transi-
tion rate, but the effective parameters depend upon the kind
of process under consideration. Therefore the effective tem-
perature cannot be defined in a unique way and there is no
effective Hamiltonian casting this system. Therefore, the
model cannot be mapped into a kinetic Ising model with
effective parameters. Nevertheless, it is useful to define a
pseudotemperature T[Teff

(4) @15#. Notice that at the critical
point the inequalityTeff

(4),TOnsager,Teff
(8) has to hold. The in-

ability to find an effective Hamiltonian leaves us with the
only possibility of using mean field type of approximations
or numerical schemes to get insight into the system behavior.

IV. MONTE CARLO SIMULATION

In this section we present the results of intensive MC
simulations we have performed. We concentrate on the de-
termination of the critical point, critical exponents, and some
qualitative properties of the critical region. We have studied
the model on a two-dimensional square lattice,N5L3L,
and considered different system sizes,L516,32,64, and
128, providing enough data to perform a finite size scaling
analysis. We take data after letting the systems evolve long
enough~typically between 105 and 33105 MC steps per
particle!, so it is guaranteed that it has reached its stationary
state. The stationary regime involves typically between 106

and 23106 MC steps with data collected every 200 MC
steps. We have performed similar simulations for the two-
dimensional Ising model in order to compare our results with
the equilibrium case. An accurate estimate of the critical
value ofp, i.e.,pc , is important for reliable determination of
critical exponents. We get it from a finite size analysis of the
normalized fourth-order cumulant of the stationary distribu-
tion, defined as@16,17#

UL512
^m4&L
3^m2&2L

, ~4.1!

wherem is the magnetizationm51/N^(xsx& and^&L stands
for the average over configurations for the system sizeL.
UL has the useful property of growing with the system size
in the ordered phase, and decreasing in the disordered one.
Owing to that property, one may determine the critical point
~see Fig. 1!. Our best estimate ispc50.85960.001, which,
using the pseudotemperature introduced in the previous sec-
tion, corresponds toTcrit52.04260.006. From now on we
express the results in terms of

e[
T2Tcrit
Tcrit

. ~4.2!

In which follows we compute three different critical ex-
ponentsb,n, andg associated to the magnetization, correla-
tion length, and susceptibility, respectively@18#; other expo-
nents can be calculated from them using well known scaling
relations@1#.

In Fig. 2 we present data for the magnetization as a func-
tion of e for L5128. Data for the equilibrium Ising model
simulation are presented too. In Fig. 3 we plotm8 versuse
for both the equilibrium and the nonequilibrium cases; from
the linear behavior below the critical point we conclude that
m.Ae1/8; therefore b51/8 as in the equilibrium Ising
model. Note, however, that the thermodynamic amplitudes,
which are nonuniversal, are different. Using this exponent
value and the scaling lawm;eb f (eL1/n), where f is a uni-
versal function andb andn are defined in the standard way
@17#, we can adjustn so that we have the same function

FIG. 3. Plot ofm8 vs e for L5128.s are for the nonequilib-
rium case andh for the Ising model. The linear behavior around
the critical point implies thatb51/8. In the inset, (m/A)8 vs e for
both the equilibrium and the nonequilibrium case.A is the thermo-
dynamic amplitude.

FIG. 4. Log-log plot ofmLb/n vs eL1/n for the nonequilibrium
case and for different system sizes~we use the same symbols as in
Fig. 1!. Data collapse is observed forn51 andb51/8.
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f (eL1/n) for the different system sizes. Using the fact that
near the critical pointe;L21/n , it is possible to conclude
thatmLb/n has to be a universal function ofeL1/n indepen-
dent ofL. In Fig. 4 the collapse of the curves for different
system sizes is shown whenn51, i.e., the equilibrium value.

Analogously, in Fig. 5, based on the scaling relation
x;egg(eL1/n), wherex is the magnetic susceptibility~that
is, the derivative of the magnetization with respect toT), and
g its associated critical exponent@17,18#, we observe data
collapse forg57/4.

Using scaling relations the remaining critical exponents
can be computed, and the conclusion is made that the system
belongs in the two-dimensional Ising model universality
class confirming once again the conjecture in@11#.

In order to further explore analogies and differences be-
tween the equilibrium and nonequilibrium problems, we de-
termine numerically the asymptotic behavior of the cluster
distribution around the critical point. Following the ideas
originally proposed by Fisher@19# and later developed by
Cambier and Nauenberg@20# we compute the following two
magnitudes:P( l ) and S( l ) defined as the total number of
clusters of sizel taken from a given number of independent
configurations and the mean value of the surface. Herel
represents the number of spins aligned in a given direction
that have at least another nearest neighbor aligned spin, and
S is the number of NN broken bonds associated with the
boundary of the cluster averaged for each value ofl . In the
critical region we have that@20#

P~ l !; l2tg~e l y! ~4.3!

and

S~ l !; l sh~e l y!, ~4.4!

whereg andh are universal functions andt, s, andy are
critical exponents. These exponents have been computed for
the equilibrium Ising model by Cambier and Nauenberg@20#,
giving t'2.05,s'0.68, andy'0.44, respectively. In Fig. 6
we show the results of our numerical simulations forP( l );
values are obtained from 5000 independent configurations in
the stationary state.

A few remarks follow. The first one forP( l ) is that the
scaled curves for different values ofp near the critical point
collapse within good agreement. The second one is that in
the log-log plot we have the same slope for both the equilib-
rium and the nonequilibrium cases, the best estimate being
t52.054. This shows, once again, that both are in the same
universality class. The last remark is that for very small clus-
ters ~i.e., sizesl51! there is a clear difference between the
equilibrium and nonequilibrium curves: in the nonequilib-
rium case the number of clusters with one particle is larger
than expected~see inset in Fig. 6!. This has a simple expla-
nation in terms of thepseudotemperaturethat we previously
introduced. As in the nonequilibrium model,Teff

(8)52Teff
(4) it is

more likely to flip a spin completely surrounded by aligned
spins than one with only three aligned neighbors. Conse-
quently, it is more likely to have fluctuations in the clusters
interior than in the borders. This increases the number of one
spin clusters. For larger cluster this effect is much smaller,
and for l55, is unobservable; in particular the asymptotic
behavior, for large clusters, is unaffected by this effect. In
Fig. 7 we show two different configurations: for the Ising
model and the two-temperatures model. In both cases, the
magnetization is chosen to be the same, but it is clear that
one spin cluster is favored in the nonequilibrium case. The
effect of this can also be observed in some physical magni-
tudes. For example, in Fig. 2~see inset! we represent the
magnetization as a function of the energy~or pseudoenergy
in the nonequilibrium case! defined as e[
2(2N)21( (x,y)sxsy where (x,y) are nearest neighbors pairs.
For a fixed magnetization, the energy is larger in the non-
equilibrium model, corresponding to the fact that there are
more isolated one-spin clusters.

FIG. 5. Log-log plot ofxL2g/n vs eL1/n for the nonequilibrium
case and for different system sizes~we use the same symbols as in
Fig. 1!. Data collapse is observed forn51 andg57/4.

FIG. 6. Log-log plot ofP( l ) defined as the average number of
the clusters of a given sizel , for different system sizes. The upper
~lower! curve corresponds to the nonequilibrium~equilibrium! situ-
ation. The lower curve is displaced three units in the vertical direc-
tion for a better data visualization. In the upper curve:s,
e50.0.0036; h, e50.0109; L, e50.0181; n, e50.0254; x,
e50.0398; 1, e50.0579. In the lower ones, e50.0071; h,
e50.0129; L, e50.0173; n, e50.0217; 3, e50.0428; 1,
e50.0525. In both cases the best fit givest'2.054. Inset: linear
plot of P( l )/106. For small cluster sizes there is a difference be-
tween the equilibrium and the nonequilibrium curves.
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In Fig. 8 we show the results for the numerical measure of
S( l ). The scaling now is better than in Fig. 6. The exponent
is again the same as in equilibrium. In the inset we represent
the functionF(x) defined by

F~eny![e1/y(
l51

n

l tP~ l ,e!. ~4.5!

We observe curve collapse fort52.05460.004 and
y50.4460.01, which, again, coincide with the equilibrium
values within the accuracy limits.

V. CRITICAL REGION SIZE

In this section we address the problem of the critical re-
gion size. It was argued in@9# that the two-temperatures
Ising model has a much broader region in which the critical
scaling holds than the equilibrium Ising model@see, for ex-
ample, Fig. 1~b! in @9##. In particular the scaling region for
the magnetization is one order of magnitude larger than its
equilibrium counterpart. The question arose as to what the
essential physical difference between the equilibrium and
nonequilibrium Ising models is.

In what follows, we present evidence that, in fact, there is
no essential difference and find a simple explanation for the
divergences observed in@9#.

First of all, let us revisit Fig. 3. It seems that the linear
approximation around the critical point is valid for a wider
interval than it is in equilibrium. Imagine now that we rep-
resentm8 as a function ofep[(p2pc)/pc in analogy to
what is done in@9#. As can be easily shown

e5
T2Tcrit
Tcrit

'
p2pcrit
pcrit

pcrit
pcrit21

5
ep

6.092•••
, ~5.1!

that is, there is a factor larger than 6, betweene and ep .
Therefore, expressing the results in terms ofep results in a
broadening of the critical region by a factor of about 6. This
factor gets rid of the huge difference between critical do-
mains observed in@9#.

The introduction of thepseudotemperature, for our par-
ticularly simple model, allows us to define ane parameter

that permits a more suitable comparison with equilibrium
results. But, even representing all the physical magnitudes in
terms ofe, there is still a significantly larger scaling region
for the nonequilibrium model as can be observed in Fig. 3.
This could suggest that for a given fixed magnetization the
correlation length is larger for the nonequilibrium case, so it
is somehow nearer to the critical point. In order to avoid
completely any effect associated with thee definition, we
have plotted the correlation length versus magnetization for
both the equilibrium and the nonequilibrium cases. There is a
very good agreement between the two curves showing that in
fact there is no fundamental physical difference between the
equilibrium and nonequilibrium cases. Only the thermody-
namic amplitudeA, which is not a universal quantity, is dif-
ferent in both cases. To further corroborate this conclusion,
we have replotted (m/A)8 versuse. In that new plot, it is
checked that the scaling regions are essentially indistinguish-
able in both cases~see Fig. 3, inset! confirming that the ap-
parent difference in the critical region sizes is due to the
different definition of the relative distance to the critical
point, e.

VI. CONCLUSIONS

We have introduced a simple nonequilibrium extension of
the Ising model. We show that it cannot be represented by an
effective equilibrium Hamiltonian, therefore the standard
equilibrium techniques are not available to study the model.
Nevertheless, it is possible to define apseudotemperature
which allows us to make a more suitable comparison of the
model with the equilibrium Ising model than those per-
formed in previous papers. In particular, it is shown that the
model belongs in the Ising universality class, and that there
is no essential physical difference giving rise to a much
broader critical region as was recently proposed.

FIG. 8. Log-log plot ofS( l ) defined as the average surface of
the clusters of sizel for 20, l,300 for different system sizes~the
symbols are the same as in Fig. 6!. The lower~upper! curve corre-
spond to the equilibrium~nonequilibrium! model. The nonequilib-
rium curve is displaced two units in the vertical direction. In both
cases the best fit givess'0.68. Inset: scaling functionF in the
nonequilibrium case. See text for further explanations.

FIG. 7. ~a! A configuration with magnetization,m'0.67 for the
two-temperatures model. Black dots represent up spins.~b! A con-
figuration for the equilibrium Ising model with the same value of
the magnetization. The number of one-particle clusters is larger in
the nonequilibrium model.

4842 54A. ACHAHBAR, J. J. ALONSO, AND M. A. MUÑOZ
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